1. Геометрия комплексных чисел

В первой главе комплексные числа изучались с алгебраической точки зрения. Мы рассмотрели основные алгебраические операции и свойства комплексных чисел.

Но комплексные числа имеют и геометрическую интерпретацию как точки на плоскости или двумерные векторы. Действительно, каждое комплексное число z определяется парой вещественных чисел (x,y): z=x+iy.

1.1. Комплексная плоскость

Рассмотрим плоскость и прямоугольную систему координат на ней. Ось абсцисс (ось Ox) обозначим Re z, а ось ординат (ось Oy) обозначим Im z (см. рис 1). Каждому комплексному числу z = x + iy сопоставим точку на этой плоскости с координатами (x, y), и, другими словами, радиус-вектор с координатами (x, y).

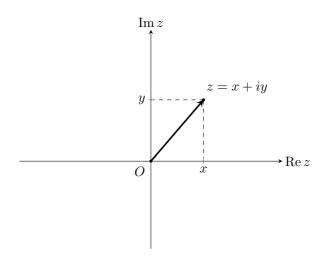


Рис. 1. Комплексная плоскость z

Заметим, что каждому комплексному числу соответствует толь-

ко одна точка плоскости, и, наоборот, каждой точке на плоскости соответствует только одно комплексное число.

Длина вектора с координатами (x,y) равна $\sqrt{x^2+y^2}$. Таким образом, модуль комплексного числа z=x+iy равен длине вектора, который соответствует данному числу на комплексной плоскости (см. равенство (??)). Часто модуль обозначают $|z|=\rho$. Несложно проверить, что расстояние между двумя точками комплексной плоскости z_1 и z_2 равно $|z_1-z_2|$. Таким образом, модуль разности двух комплексных чисел есть расстояние между точками на комплексной плоскости, которые соответствуют этим числам.

Аргументом комплексного числа z=x+iy называется угол φ между вектором (x,y) и положительным направлением действительной оси $\operatorname{Re} z$ измеряемый против хода часовой стрелки (рис. 2).

Аргумент числа z обозначается $\operatorname{Arg} z$.

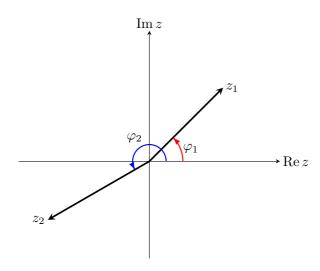


Рис. 2. Аргумент комплексного числа: $\operatorname{Arg} z_1 = \varphi_1$, $\operatorname{Arg} z_2 = \varphi_2$

Строго говоря, аргумент комплексного числа определен не од-

нозначно, в общем виде аргумент можно записать как

$$\operatorname{Arg} z = \operatorname{arg} z + 2\pi k$$
, где $k \in \mathbb{Z}$,

где $0 \leqslant \arg z < 2\pi$ — *главное значение* аргумента. В свою очередь, главное значение аргумента комплексного числа определено однозначно (и принимает значения в промежутке $[0,2\pi)$).

Единственное комплексное число, для которого значение аргумента не определяют, это z=0. Впрочем, это также единственное число, у которого модуль равен нулю, поэтому неопределённость аргумента в данном случае не является проблемой. Также можно отметить: для действительных чисел ($\operatorname{Im} z=0$) $\operatorname{arg} z=0$, если число положительное, и $\operatorname{arg} z=\pi$, если число отрицательное.

Геометрически сложение чисел z_1 и z_2 производится по правилу сложения векторов (по правилу параллелограмма). Разность z_1-z_2 представляется вектором, конец которого находится в точке z_1 , а начало — в точке z_2 (см. рис. 3).

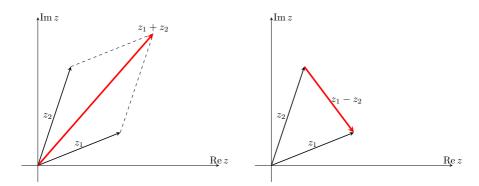


Рис. 3. Геометрическое представление суммы и разности

Геометрический смысл умножения на мнимую единицу i состоит в повороте на угол $\pi/2$ (или 90°). Действительно, пусть z=x+iy, тогда $i\cdot z=-y+ix$. Преобразование $(x,y)\mapsto (-y,x)$ — это поворот вектора (x,y) на $\pi/2$ против часовой стрелки.

Умножение комплексного числа z=x+iy на комплексную экспоненту $e^{i\theta}$ соответстует повороту на угол θ против часовой стрелки (см. подробней пункты 1.2.1. и 1.3.1.).

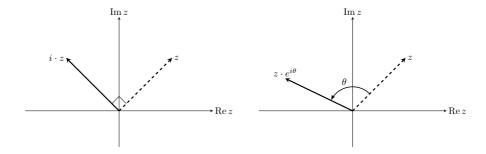


Рис. 4. Геометрический смысл умножения на i и на $e^{i\theta}$

Геометрический смысл операции сопряжения $z\mapsto \overline{z}$ состоит в отражении относительно оси Ox.

Пример 1. Исходя из геометрических рассуждений, доказать неравенство

$$\left| \frac{z}{|z|} - 1 \right| \leqslant \arg z.$$

 $\boldsymbol{Pemenue.}$ Число $\frac{z}{|z|}$ находится на единичной окружности.

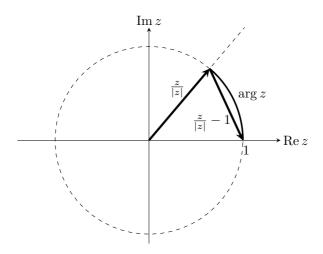


Рис. 5. Длина дуги больше длины отрезка.

Построим на комплексной плоскости вектор, соответствующий разности $\frac{z}{|z|} - 1$ (рис. 5).

Длина дуги единичной окружности, соединяющей точки 1 и $\frac{z}{|z|}$, равна arg z и не может быть меньше длины отрезка соединяющего эти точки. \triangle

Пример 2. Зафиксируем $z_0 \in \mathbb{C}$ и $r \in \mathbb{R}$, r > 0. Изобразить на комплексной плоскости множество точек, соответствующих комплексным числам z, которые удовлетворяют условиям:

1)
$$|z - z_0| = r$$
, 2) $|z - z_0| \le r$.

Решение. 1) Пусть z = x + iy и $z_0 = x_0 + iy_0$. Распишем модуль комплексного числа $|z - z_0|$ по определению:

$$|z - z_0| = |x + iy - (x_0 + iy_0)| = |x - x_0 + i(y - y_0)| = \sqrt{(x - x_0)^2 + (y - y_0)^2}.$$

Тогда равенство $|z-z_0|=r$ равносильно

$$\sqrt{(x-x_0)^2+(y-y_0)^2}=r$$
 или $(x-x_0)^2+(y-y_0)^2=r^2$.

В свою очередь, уравнение $(x-x_0)^2 + (y-y_0)^2 = r^2$ задаёт окружность с центром в точке (x_0, y_0) и радиусом r.

2) Рассуждая аналогичным образом, приходим к выводу, что неравенство $|z-z_0| \le r$ равносильно неравенству $(x-x_0)^2 + (y-y_0)^2 \le r^2$, которое задаёт круг.

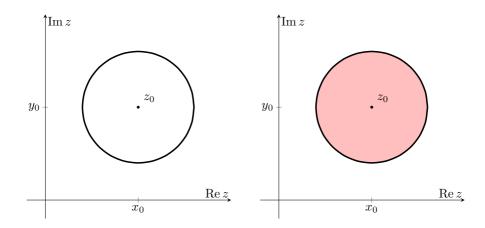


Рис. 6. Окружность и круг с центром в точке z_0 .

Таким образом уравнения $|z - z_0| = r$ и $|z - z_0| \leqslant r$ определяют на комплексной плоскости окружность и круг с центром в точке z_0 и радиусом r (рис. 6).

Δ

Пример 3. Выяснить геометрический смысл указанных соотношений:

a)
$$|z| = \text{Re } z + 1$$
, 6) $|z| = \text{Im } z + 1$.

 $\boldsymbol{Peшениe.}\,$ а) Пусть z=x+iy, тогда первое соотношение можно переписать как

$$\sqrt{x^2 + y^2} = x + 1. ag{1}$$

Отметим, что модуль комплексного числа |z| всегда больше или равен нулю. Поэтому $x \geqslant -1$ (или $\operatorname{Re} z \geqslant -1$).

Возведём обе части уравнения (1) в квадрат и приведём подобные:

$$y^2 = 2x + 1. (2)$$

Уравнение (2) задаёт параболу с вершиной в точке $(-\frac{1}{2},0)$.

б) Проводя аналогичные рассуждения, получаем, что второе соотношение эквивалентно уравнению

$$x^2 = 2y + 1,$$

которое задаёт параболу с вершиной в точке $(0, -\frac{1}{2})$ (см. рис. 7).

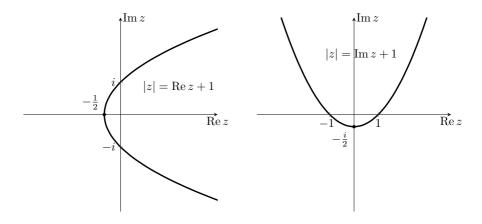


Рис. 7. Параболы

Пример 4. Изобразить множество точек на комплексной плоскости, соответствующих числам, которые удовлетворяют условию

$$|z - 1| + |z + 1| = 3. (3)$$

Δ

Решение. Пусть z = x + iy, тогда (3) равносильно

$$\sqrt{(x-1)^2 + y^2} + \sqrt{(x+1)^2 + y^2} = 3.$$

Перенесём второе слагаемое вправо и возведём обе части равенства в квадрат:

$$(x-1)^2 + y^2 = 9 - 6\sqrt{(x+1)^2 + y^2} + (x+1)^2 + y^2,$$

или, сокращая,

$$6\sqrt{(x+1)^2 + y^2} = 9 + 4x. \tag{4}$$

Возведём обе части равенства (4) в квадрат:

$$36(x^2 + 2x + 1 + y^2) = 81 + 2 \cdot 36x + 16x^2,$$

и далее

$$20x^2 + 36y^2 = 45. (5)$$

Перепишем уравнение (5) в виде

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, где $a^2 = \frac{9}{4}$, $b^2 = \frac{5}{4}$.

Таким образом, исходное уравнение (3) равносильно каноническому уравнению эллипса (рис. 8).

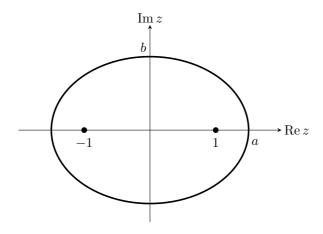


Рис. 8. Эллипс (большая полуось $a=\frac{3}{2}$, малая полуось $b=\frac{\sqrt{5}}{2}$)

Замечание. Вообще говоря, с самого начала можно было заметить, что уравнение (3) задаёт множество точек z, для которых сумма расстояний до двух данных (-1 и 1) постоянна (и равна 3). Другими словами, это уравнение эллипса с фокусами в точках -1 и 1.

 \wedge

Пример 5. Найти множество точек z на комплексной плоскости, для которых выполняется условие

$$|z - i| = |z - 1|. (6)$$

Решение. Заметим, что |z-i| — это расстояние от z до i, а |z-1| — расстояние от z до 1. Таким образом, множество точек z, удовлетворяющих (6), является множеством точек, равноудалённых от двух данных (от i и от 1). Это множество представляет собой серединный перпендикуляр к отрезку, соединяющему данные точки (рис. 9).

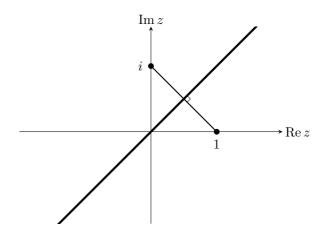


Рис. 9. Серединный перпендикуляр к отрезку [1,i]

 \wedge

Пример 6. Для всех комплексных чисел z u w, удовлетворяющих соотношениям |z|=12 u |w-3-4i|=5, найти минимум u максимум модуля разности |z-w|.

Решение. Заметим, что все числа z, удовлетворяющие соотношению |z|=12, образуют окружность с центром в нуле и радиусом 12. Соотношение |w-3-4i|=5 задаёт окружность с центром в точке 3+4i и радиусом 5. В свою очередь, величина |z-w| есть расстояние между точками z и w. Таким образом, задача состоит в том, чтобы найти минимальное и максимальное расстояние между точками z и w, лежащими на соответствующих окружностях. Построим эти окружности.

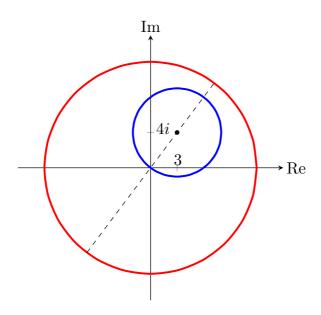


Рис. 10. Окружности |z|=12 и |w-3-4i|=5

Из рис. 10 очевидно , что 12 — максимальное расстояние, а 2 — минимальное 1 .

 $^{^1{\}rm K}$ ратчайшее расстояние между двумя непересекающимися окружностями

1.2. Тригонометрическая форма записи

Пусть z = x + iy и $\varphi = \operatorname{Arg} z$, тогда

$$\cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}, \quad \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}.$$
 (7)

Обозначим $\rho = \sqrt{x^2 + y^2}$. Из (7) выводим

$$\operatorname{Re} z = x = \rho \cos \varphi$$
 и $\operatorname{Im} z = y = \rho \sin \varphi$. (8)

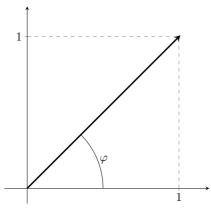
В итоге из (8) имеем

$$z = x + iy = \rho(\cos\varphi + i\sin\varphi).$$

Запись комплексного числа вида $z = \rho(\cos \varphi + i \sin \varphi)$, где $\rho = |z|$, а $\varphi = \text{Arg } z$, называется **тригонометрической**.

Пример 7. Записать число z = 1 + i в тригонометрической форме.

Решение. Данное число z на комплексной плоскости является вектором с координатами (1,1).



Вектор направлен по диагонали единичного квадрата, и поэтому угол $\varphi = \pi/4$. Длина вектора (модуль z) $\rho = \sqrt{1+1} = \sqrt{2}$. Таким образом,

$$z = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}).$$

 \triangle

радиусов R и r равно d-(R+r), если одна окружность лежит вне другой, и R-(d+r), если одна – внутри другой (d — расстояние между центрами).

1.2.1. Произведение в тригонометрической форме

Пусть $z_1 = \rho_1(\cos\varphi_1 + i\sin\varphi_1)$, а $z_2 = \rho_2(\cos\varphi_2 + i\sin\varphi_2)$ — два комплексных числа (в тригонометрической записи), тогда несложно проверить, что их произведение можно вычислить следующим образом: ²

$$z_1 \cdot z_2 = \rho_1 \cdot \rho_2(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)). \tag{9}$$

Другими словами, модуль произведения двух комплексных чисел равен произведению модулей этих чисел, сумма аргументов сомножителей является аргументом произведения.

В свою очередь, деление комплексных чисел, записанных в тригонометрической форме, имеет вид

$$\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)).$$

Таким образом, модуль частного двух комплексных чисел равен частному модулей этих чисел, разность аргументов делимого и делителя является аргументом частного.

Пример 8. Найти произведение и частное комплексных чисел:

$$z_1 = 3\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right), z_2 = 2\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right).$$

Peweнue. По формуле умножения комплексных чисел в тригонометрической форме получаем

$$z_1 \cdot z_2 = 3 \cdot 2 \left(\cos \left(\frac{3\pi}{4} + \left(-\frac{\pi}{2} \right) \right) + i \sin \left(\frac{3\pi}{4} + \left(-\frac{\pi}{2} \right) \right) \right) = 6 \cdot \left(\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right) = 3\sqrt{2} + i3\sqrt{2}.$$

 $^{^2}$ Используя формулы $\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 = \cos(\varphi_1 + \varphi_2)$ и $\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2 = \sin(\varphi_1 + \varphi_2)$.

По формуле деления получаем

$$\frac{z_1}{z_2} = \frac{3}{2} \cdot \left(\cos \left(\frac{3\pi}{4} - \left(-\frac{\pi}{2} \right) \right) + i \sin \left(\frac{3\pi}{4} - \left(-\frac{\pi}{2} \right) \right) \right) =$$

$$\frac{3}{2} \cdot \left(\cos \left(\frac{5\pi}{4} \right) + i \sin \left(\frac{5\pi}{4} \right) \right) = 3\sqrt{2} + i3\sqrt{2}.$$

Формула (9) для произведения двух комплексных чисел может быть обобщена. В частности,

$$z^{2} = \rho^{2}(\cos 2\varphi + i\sin 2\varphi),$$

$$z^{-1} = \rho^{-1}(\cos(-\varphi) + i\sin(-\varphi)).$$

И для любого целого числа k верно

$$z^{k} = \rho^{k}(\cos k\varphi + i\sin k\varphi). \tag{10}$$

Другими словами, формула (10) задаёт способ возведения комплексного числа в степень.

Пример 9. Вычислить

$$\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^{10}.$$

 $\pmb{Peшeнue}.$ Представим число $\frac{1}{2}\!-\!i\frac{\sqrt{3}}{2}$ в тригонометрической форме. Получим

$$\frac{1}{2} - i\frac{\sqrt{3}}{2} = 1 \cdot \left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right).$$

Далее по формуле (10) вычисляем:

$$\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)^{10} = \left(\cos\left(-\frac{10\pi}{3}\right) + i\sin\left(-\frac{10\pi}{3}\right)\right) = \left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

Δ

При $\rho = 1$ из выражения (10) выводится формула $Myaepa^3$:

$$(\cos \varphi + i \sin \varphi)^k = \cos k\varphi + i \sin k\varphi. \tag{11}$$

Эту формулу можно использовать для нахождения синусов и косинусов кратных углов.

³Часто формулой Муавра называют выражение (10).

Пример 10. Вывести формулы для $\sin 3\varphi \ u \cos 3\varphi$.

Решение. Запишем выражение (11) в частном случае (k=3):

$$(\cos \varphi + i \sin \varphi)^3 = \cos 3\varphi + i \sin 3\varphi.$$

Используя формулу (??), распишем левую часть:

$$(\cos \varphi + i \sin \varphi)^3 = \cos^3 \varphi + 3i \cos^2 \varphi \sin \varphi - 3 \cos \varphi \sin^2 \varphi - i \sin^3 \varphi$$
$$= \cos^3 \varphi - 3 \cos \varphi \sin^2 \varphi + i (3 \cos^2 \varphi \sin \varphi - \sin^3 \varphi).$$

Таким образом,

$$\cos^3 \varphi - 3\cos\varphi \sin^2 \varphi + i(3\cos^2 \varphi \sin\varphi - \sin^3 \varphi) = \cos 3\varphi + i\sin 3\varphi.$$

Приравнивая действительные и мнимые части, имеем

$$\sin 3\varphi = 3\cos^2 \varphi \sin \varphi - \sin^3 \varphi,$$
$$\cos 3\varphi = \cos^3 \varphi - 3\cos \varphi \sin^2 \varphi.$$

 \triangle

Пример 11. Вычислить $(\cos 2\varphi + i \sin 2\varphi + 1)^n$.

Peweнue. Воспользуемся следующими тригонометрическими формулами:

$$1 + \cos 2\varphi = 2\cos^2 \varphi$$
 $\pi \sin 2\varphi = 2\sin \varphi \cdot \cos \varphi$.

Тогда имеем

$$\cos 2\varphi + i\sin 2\varphi + 1 = 2\cos^2\varphi + 2i\sin\varphi \cdot \cos\varphi = 2\cos\varphi(\cos\varphi + i\sin\varphi).$$

Далее с помощь формулы Муавра (11) возводим в степень n:

$$(\cos 2\varphi + i\sin 2\varphi + 1)^n = 2^n \cdot \cos^n \varphi \cdot (\cos n\varphi + i\sin n\varphi).$$

 \triangle

Пример 12. Пусть $n \in \mathbb{N}$, $z \in \mathbb{C}$, |z| = 1 и известно, что $z^{2n} \neq -1$. Проверить, что $\frac{z^n}{1+z^{2n}}$ является действительным числом $(m.\ e.\ \mathrm{Im}\ \frac{z^n}{1+z^{2n}}=0).$

Решение. Поскольку |z|=1, то

$$z = \cos \varphi + i \sin \varphi,$$

а по формуле (11)

$$z^n = \cos n\varphi + i\sin n\varphi$$
 u $z^{2n} = \cos 2n\varphi + i\sin 2n\varphi$.

Далее, используя формулы

$$1 + \cos 2\varphi = 2\cos^2 \varphi$$
 и $\sin 2\varphi = 2\sin \varphi \cdot \cos \varphi$,

имеем

$$1 + z^{2n} = 1 + \cos 2n\varphi + i\sin 2n\varphi = 2\cos^2 n\varphi + i2\sin n\varphi \cos n\varphi = 2\cos n\varphi(\cos n\varphi + i\sin n\varphi).$$

Тогда

$$\frac{z^n}{1+z^{2n}} = \frac{\cos n\varphi + i\sin n\varphi}{2\cos n\varphi(\cos n\varphi + i\sin n\varphi)} = \frac{1}{2\cos n\varphi}.$$

Δ

Пример 13. Вычислить $\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{2013}$.

Решение. Представим число $\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$ в тригонометрической форме:

$$\frac{1}{2} + i\frac{\sqrt{3}}{2} = \cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi.$$

Применяя формулу возведения в степень, получим

$$\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{2013} = \cos\left(2013 \cdot \frac{2}{3}\pi\right) + i\sin\left(2013 \cdot \frac{2}{3}\pi\right) = \cos\left(342\pi + i\sin 1342\pi\right) = \cos\left(342$$

 \triangle

1.2.2. Извлечение корней из комплексных чисел

Тригонометрическая запись комплексных чисел оказывается удобной и для извлечения корней n-й степени.

Напомним, что корень n-й степени $z^{\frac{1}{n}}$ (или $\sqrt[n]{z}$) — это комплексное число w, для которого выполнено условие $w^n=z$, т. е. при возведении этого числа в степень n мы получим z.

Если $z \neq 0$, то существует n различных корней n-й степени из числа z:

$$w_k = \sqrt[n]{|z|} \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right), \qquad (12)$$

где $k = 0, 1, 2, \dots, n-1$ и $\varphi = \arg z$.

При этом числа w_k имеют одинаковый модуль (равный $\sqrt[n]{|z|}$) и расположены в вершинах правильного n-угольника (для случаая $\sqrt[8]{1}$ см рис. 11). Ести n=2, то значения корня лежат на диаметре окружности с центром в нуле.

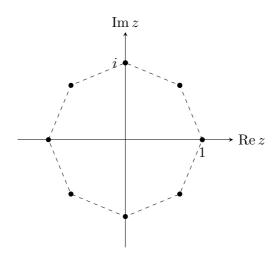


Рис. 11. Все значения $\sqrt[8]{1}$

Заметим, что в формуле (12) $\sqrt[n]{|z|}$ — это арифметический ко-

рень из положительного числа, а значит, определён однозначно.

Особенность извлечения корня из комплексного числа заключается в следующем. Если мы будем рассматривать $\sqrt[n]{z}$ как функцию от z:

$$f(z) = \sqrt[n]{|z|},$$

то в каждой точке (за исключением нуля) f(z) будет принимать ровно n различных значений. Таким образом, $\sqrt[n]{z}$ является примером многозначной функции.

Пример 14. Вычислить $\sqrt{1+i}$ и изобразить на комплексной плоскости.

Решение. Сначала нужно представить число 1+i в тригонометрической форме. Мы это уже сделали в примере 7.:

$$1 + i = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}),$$

где $\rho=|z|=\sqrt{2}$ и $\arg z=\frac{\pi}{4}.$

Поскольку n=2, то в соответствии с формулой (12) имеем два корня:

$$w_1 = \sqrt[4]{2}(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}),$$

$$w_2 = \sqrt[4]{2}(\cos\frac{9\pi}{8} + i\sin\frac{9\pi}{8}).$$

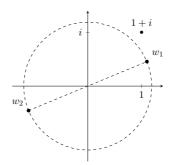


Рис. 12. Значения квадратного корня $\sqrt{1+i}$

На рис. 12 изображены значения корня w_1, w_2 , они расположены на окружности радиусом $\sqrt[4]{2}$.

Пример 15. На комплексной плоскости задан треугольник с вершинами в точках 1, 2i, -1 (рис. 13).

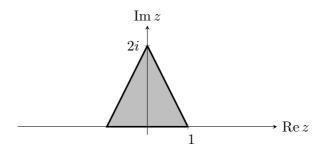


Рис. 13. треугольник с вершинами в точках 1, 2i, -1

Найти, как изменится треугольник, если для всех точек z из этого треугольника выполнить следующие действия:

1)
$$z \cdot i$$
, 2) $z + i$, 3) $\frac{z}{i}$, 4) $z - i$.

Решение. Исходя из геометрического смысла указанных действии можно увидеть: 1) умножение на i - поворот против часовой стрелки на угол 90° , 2) прибавление i - сдвиг по мнимой оси в положительном направлении, 3) деление на i - поворот против часовой стрелки на угол 90° , 4) вычитание i - сдвиг в отрицательном направлении (см. рис. 14).

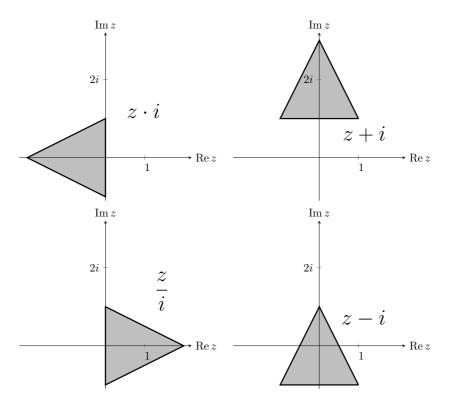


Рис. 14. Образ треугольника при различных действиях

 \triangle

Пример 16. Найти все такие $z \in \mathbb{C}$, что

$$\arg(z-i) < \frac{\pi}{6}.$$

Решение. Обозначим w=z-i и решим неравенство $\arg(w)<\frac{\pi}{6}$. Все числа w, аргумент которых меньше чем, $\pi/6$, находятся в заштрихованной области на рис. 15. Поскольку z=w+i, то искомая область будет сдвинута на единицу по мнимой оси в положительном направлении.

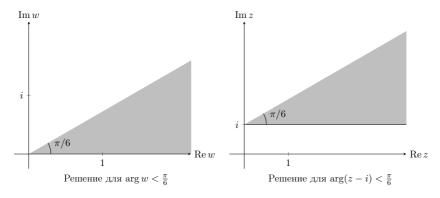


Рис. 15. К примеру 16.

 \triangle

1.3. Показательная форма записи

Существует ещё одна форма записи комплексных чисел. Для этой формы потребуется ввести понятие комплексной экспоненты e^z .

1.3.1. Комплексная экспонента

Экспонента e^z является примером комплексной функции комплексного переменного.

Комплексную экспоненту определяют в виде суммы степенного ряда (см. п. ??):

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{z^k}{k!},$$

или как предел последовательности:

$$e^z = \lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n. \tag{13}$$

Основные свойства функции e^z — это

$$e^{z+w} = e^z \cdot e^w \quad \text{и} \quad (e^z)^w = e^{z \cdot w}, \tag{14}$$

где $z, w \in \mathbb{C}$ — любые комплексные числа. Далее нам потребуется формула Эйлера:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi,\tag{15}$$

где $\varphi \in \mathbb{R}$ — действительное число.

В частности получаем, что

$$|e^{i\varphi}| = 1$$

 $|e^{iarphi}|=1$ для любого $arphi\in\mathbb{R}.$

При подстановке в формулу (15) конкретных значений φ выводим следующие соотношения:

$$e^0 = 1$$
, $e^{\frac{\pi i}{2}} = i$, $e^{\pi i} = -1$, $e^{\frac{3\pi i}{2}} = -i$, $e^{2\pi i} = 1$,

И

$$e^{2\pi ki}=1,$$
 где $k\in\mathbb{Z}.$

Равенство

$$e^{i\pi} + 1 = 0.$$

связывает между собой пять самых распространённых математических постоянных и считается одним из величайших математических соотношений.

Запись в показательной форме 1.3.2.

Пусть $z\in\mathbb{C},\, \rho=|z|$ и $\varphi=\arg z,$ тогда число z можно записать в виде

$$z = \rho e^{i\varphi}$$
.

Пример 17. Записать число z = 1 + i в показательной форме.

Решение. Ранее в примере 7. мы вычислили величины $\arg z = \frac{\pi}{4}$ и $\rho = \sqrt{2}$. Следовательно,

$$z = \sqrt{2}e^{\frac{i\pi}{4}}.$$

Δ

Показательная форма удобна для таких операций, как умножение, деление, возведение в степень и извлечение корня.

Пусть $z_1 = \rho_1 e^{i\varphi_1}$ и $z_2 = \rho_2 e^{i\varphi_2}$, тогда

$$z_1 \cdot z_2 = \rho_1 \rho_2 e^{i(\varphi_1 + \varphi_2)}, \quad \frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} e^{i(\varphi_1 - \varphi_2)}$$

И

$$(z)^n = \rho^n e^{in\varphi}, \quad \sqrt[n]{z} = \sqrt[n]{\rho} e^{i\frac{\varphi + 2\pi k}{n}},$$
 где $k = 0, 1, 2, \dots, n-1.$

Пример 18. Найти действительные корни уравнения

$$\cos x + i\sin x = \frac{1}{2} + \frac{3}{4}i.$$

Решение. По формуле Эйлера $\cos x + i \sin x = e^{ix}$, $|e^{ix}| = 1$ для любого действительного x, значит, $|\cos x + i \sin x| = 1$.

С другой стороны, для модуля правой части имеем

$$\left|\frac{1}{2} + \frac{3}{4}i\right| = \frac{\sqrt{13}}{4} \neq 1.$$

Следовательно, у данного уравнения действительных корней не существует. \triangle

Сфера Римана. Бесконечно удаленная точка

В этом пункте мы рассмотрим подход, который позволяет ввести понятие бесконечно удаленной точки на комплексной плоскости. Более полное изложение приведено в [?].

Рассмотрим трехмерное евклидово пространство с координатами (ξ, η, θ) и совместим комплексную плоскость $\mathbb C$ с плоскостью $O\xi\eta$ так, чтобы действительная ось совпала с осью $O\xi$, мнимая ось с осью $O\eta$, и положительные направления на соответствующих осях совпадали.

Обозначим через S сферу с центром в точке $\left(0,0,\frac{1}{2}\right)$ радиуса $\frac{1}{2},$ имеющую уравнение

$$\xi^2 + \eta^2 + \left(\theta - \frac{1}{2}\right)^2 = \frac{1}{4},\tag{16}$$

а точку (0,0,1) назовем **полюсом** сферы S и обозначим символом P. Соединим отрезком точку $\mathbf{z} \in \mathbb{C}$ с полюсом P, при этом отрезок пересечет сферу S в единственной точке $M(\xi,\eta,\theta)$. Точка M называется $\mathbf{cmepeospa}$ \mathbf{duecko} \mathbf{duecko}

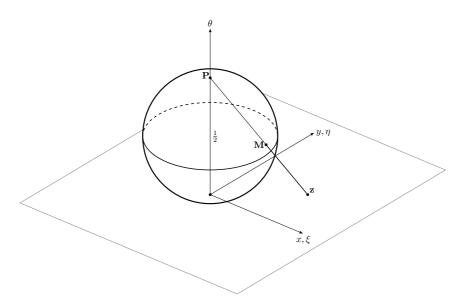


Рис. 16. Сфера Римана

Стереографическая проекция устанавливает взаимно однознач-

ное соответствие между точками комплексной плоскости $\mathbb C$ и точками сферы S с выколотым полюсом P.

В силу колинеарности точек $P(0,0,1),\,M(\xi,\eta,\theta)$ и $\mathbf{z}(x,y,0)$ имеем

$$\frac{\xi}{x} = \frac{\eta}{y} = \frac{1-\theta}{1},$$

откуда выводим

$$x = \frac{\xi}{1 - \theta}, \ y = \frac{\eta}{1 - \theta}, z = \frac{\xi + i\eta}{1 - \theta}.$$
 (17)

Поскольку

$$|z|^2 = \frac{\xi^2 + \eta^2}{(1 - \theta)^2},$$

то из уравнения сферы (16) получаем

$$|z|^2 = \frac{\theta}{1 - \theta}.\tag{18}$$

Выражая из равенства (18) значение θ и подставляя его в равенства (17), находим

$$\xi = \frac{x}{1+|z|^2}, \ \eta = \frac{y}{1+|z|^2}, \ \theta = \frac{|z|^2}{1+|z|^2}.$$
 (19)

Формулы (19) называют формулами стереографической проекции.

При неограниченном удалении точки z от нуля в произвольном направлении (вдоль произвольной прямой) образ этой точки на сфере всегда будет стремиться к полюсу P. Добавим к комплексной плоскости $\mathbb C$ идеальный объект, называемый бесконечно удаленной точкой и обозначаемый символом ∞ . Далее комплексную плоскость с присоединенной к ней бесконечно удаленной точкой будем называть расширенной комплексной плоскостью и обозначать символом $\overline{\mathbb C}$, т.е. $\overline{\mathbb C} = \mathbb C \cup \{\infty\}$.

Если мы доопределим стереографическую проекцию, полагая полюс P образом бесконечно удаленной точки, то получим вза-имно однозначное соответствие между расширенной комплексной плоскостью $\overline{\mathbb{C}}$ и сферой S.

Стандартной окрестностью полюса P на сфере является «шапочка», т.е. часть сферы S, расположенная выше некоторой плоскости $\theta=a,\ 0< a<1$. Стандартной окрестностью бесконечно удаленной точки на комплексной плоскости является прообраз стандартной окрестности полюса P при стереографической проекции, т.е. множество $U=\{|z|>r>0\}$ — внешность круга с центром в нуле. При таком определении стереографическая проекция будет непрерывна и в бесконечно удаленной точке. При этом отображение всей расширенной комплексной плоскости $\overline{\mathbb{C}}$ на сферу S будет гомеоморфизмом. Сферу S, на которой изображены комплексные числа, называют $c\phiepoù\ Pumaha$.

Естественным образом определяется сходимость последовательности комплексных чисел $\{z_n\}$ к бесконечно удаленной точке: $z_n \to \infty$, если для любой окрестности бесконечно удаленной точки U найдется такой номер n_0 , что при $n>n_0$ точки z_n принадлежат окрестности U. Это определение эквивалентно тому, что $|z_n| \to +\infty$ (более подробно про предел последовательности см. главу ??).

Задачи к главе 1

- 1. z = 1 i. Найти |z| и $\arg z$.
- 2. Пусть |z|=2 и $\arg z=\frac{\pi}{6}.$ Представить z в виде x+iy.
- 3. Пусть $0<\alpha<\beta<2\pi$ и $z_0\in\mathbb{C}$ фиксированная точка. Найти геометрическое место точек z на комплексной плоскости, таких, что:

a)
$$\alpha \leqslant \arg z \leqslant \beta$$
, 6) $\alpha \leqslant \arg(z - z_0) \leqslant \beta$.

4. Найти геометрическое место точек z на комплексной плоскости, которые удовлетворяют соотношению |z-i|+|z+i|=16.

5. Пусть z_1, z_2 — фиксированные комплексные числа. Найти геометрическое место точек, соответствующих числам z, таким, что:

a)
$$|z - z_1| = |z - z_2|$$
, 6) $|z - z_1| = |z + z_1|$.

- 6. Представить $z=\sqrt{3}+i$ в тригонометрической форме.
- 7. Представить $z = -2 + i2\sqrt{3}$ в тригонометрической форме.
- 8. Представить $\frac{2-2i}{1-\sqrt{3}}$ в тригонометрической форме.
- 9. Представить число

$$\frac{1 - \cos \alpha - i \sin \alpha}{1 + \cos \alpha + i \sin \alpha}$$

в алгебраической форме.

10. Найти произведение комплексных чисел $z_1 \cdot z_2$:

$$z_1 = 2\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right), z_2 = 3\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right).$$

- **11.** Вычислить $(1+\sqrt{3}i)^9$.
- **12.** Вычислить $\left(\frac{1}{2} i\frac{\sqrt{3}}{2}\right)^9$.
- 13. Вычислить:

a)
$$u = (1+i\sqrt{3})^{13} + (1-i\sqrt{3})^{13}$$
; 6) $v = \frac{(1+i\sqrt{3})^{13} - (1-i\sqrt{3})^{13}}{i}$.

14. Вывести формулы для $\sin 5\varphi$ и $\cos 5\varphi$.

- **15.** Вычислить $(\cos 2\varphi + i \sin 2\varphi 1)^n$.
- **16.** Вычислить $(1 + \cos \theta + i \sin \theta)^n$, где $n \in \mathbb{N}$.
- **17.** Вывести формулу для $(1+i)^n + (1-i)^n$.
- **18.** Представить в показательной форме числа $z_1 = \frac{\sqrt{6}-i\sqrt{2}}{2}$ и $z_2 = 1-i$
- **19.** Представить в показательной форме следующие комплексные числа:
 - а) $(1+i\operatorname{tg}\alpha)^{-1}$; если $|\alpha|<\pi/2$, б) $1+i\sqrt{3}$; в) $-\sqrt{6}+i\sqrt{2}$;
 - г) $1 (2 \sqrt{3})i$; д) $1 + \cos \alpha + i \sin \alpha$; где $|\alpha| < \pi$;
 - e) $1 \cos \alpha i \sin \alpha$ при $0 < \alpha < 2\pi$;
 - ж) $(1 e^{2i\alpha})(1 e^{2i\beta})$; если $0 < \alpha, \beta < \pi$.

20. Проверить, что для всех $z_1, z_2 \in \mathbb{C}$ выполнено неравенство

$$|z_1\overline{z}_2 + \overline{z}_1z_2| \leqslant 2|z_1z_2|.$$

21. Найти образы точек

a)
$$z = 1$$
, 6) $z = i$, B) $z = \frac{1-i}{\sqrt{2}}$

при стереграфической проекции.

- **22.** При каком условии стереографическими проекциями точек z_1 и z_2 являются диаметрально противоположные точки сферы Римана?
- **23.** Что соответствует на сфере Римана семейству параллельных прямых на комплексной плоскости?