А. А. Рахымжан $^{1,\,2}$, **П. В. Кошляков** 1 , **П. С.** Дементьев $^{1,\,2}$, **О. С. Асеев** $^{1,\,2}$, **А. И. Чичинин** 1

Институт химической кинетики и горения СО РАН ул. Институтская, 3, Новосибирск, 630090, Россия
 Новосибирский государственный университет ул. Пирогова, 2, Новосибирск, 630090, Россия E-mail: rakhymzhan@kinetics.nsc.ru

ИЗУЧЕНИЕ ДЕЗАКТИВАЦИИ ЭЛЕКТРОННО-ВОЗБУЖДЕННЫХ АТОМОВ ХЛОРА СІ ($^2P_{1/2}$) МОЛЕКУЛАМИ ХЛОРИСТОГО ТИОНИЛА, ХЛОРОФОРМА, ЭТИЛЕНА И ДИОКСИДА АЗОТА МЕТОДОМ ЛАЗЕРНОГО МАГНИТНОГО РЕЗОНАНСА 3

Времяразрешенный метод лазерного магнитного резонанса (ЛМР) был использован для регистрации спинорбитально возбужденных атомов хлора $\text{Cl}^*(\equiv \text{Cl}(^2\text{P}_{1/2}))$ при комнатной температуре. Впервые измерены константы скорости дезактивации атомов Cl^* (× 10^{-11} cm 3 /c, \pm 2 σ) на молекулах SOCl_2 (0,62 \pm 0,2), CCl_3H (1,8 \pm 0,4), C_2H_4 (18 \pm 5) и NO_2 (1,5 \pm 0,4). Измерена неизвестная в литературе константа скорости термонейтральной реакции хлора в основном состоянии с молекулами хлористого тионила. Вычислен выход возбужденных атомов Cl^* (Γ = 0,52 \pm 0,03) при фотодиссоциации молекул хлористого тионила на длине 248 нм.

Ключевые слова: дезактивация, спин-орбитально возбужденный атом хлора, фотодиссоциация, лазерный магнитный резонанс (ЛМР)

Введение

Основная электронная конфигурация атома хлора $(1s^22s^22p^63s^23p^5)$ дает единственный терм 2P , который расщепляется за счет спин-орбитального взаимодействия на две J-компоненты: $^2P_{1/2}$ и $^2P_{3/2}$, основным состоянием является $^2P_{3/2}$, величина расщепления составляет $882\,$ см $^{-1}$. Оптический переход $^2P_{1/2}-^2P_{3/2}$ является магнитно-дипольным, а радиационное время жизни возбужденного состояния $\mathrm{Cl}^* \ (\equiv \mathrm{Cl}^*(^2P_{1/2}))$ равно примерно $80\,$ с (см. обзор [1], где описаны все известные химические свойства спинорбитально возбужденных атомов галогенов).

Хотя изучение столкновительной дезактивации атомов Cl^* имеет долгую историю, до сих пор почти ничего неизвестно, например, об относительной реакционной способности атомов Cl^* по сравнению с невозбужденными атомами $\text{Cl} \ (\equiv \text{Cl}^*(^2P_{3/2}))$. Это связано с тем, что в подавляющем большинстве случаев измерялась суммарная (реакционная + нереакционная) скорость дезактивации атомов Cl^* . Кроме того, обычно в

литературе исследовались процессы, в которых преобладала нереакционная, т. е. чисто физическая дезактивация атомов Cl^* . Это обстоятельство стимулировало авторов начать исследование таких дезактивационных процессов, в которых можно ожидать большую вероятность химической реакции атомов Cl^* . Данная работа является первой в этом направлении.

Заметим, что в предыдущих работах, в которых методом лазерного магнитного резонанса (ЛМР) изучалась дезактивация атомов Cl^* , в качестве источника этих атомов использовался фотолиз молекул ICl. Этот источник имеет несколько недостатков: вопервых, сечение поглощения молекулы ICl при $\lambda=248$ нм невелико, оно равняется $5\cdot 10^{-19}~\mathrm{cm}^2$ [2]; во-вторых, реакция

$$Cl + ICl \rightarrow I + Cl_2$$

достаточно быстра ($8 \cdot 10^{-12} \text{ см}^3/\text{c}$) [3], и поэтому концентрация ICl должна быть достаточно маленькой; в-третьих, ICl — это плохолетучая жидкость (P=20 Торр при T=20 °C), концентрацию которой в потоке буферного газа трудно контролировать. И, наконец, самый скрытый, но очень важ-

ISSN 1818-7994. Вестник НГУ. Серия: Физика. 2009. Том 4, выпуск 4 © А. А. Рахымжан, П. В. Кошляков, П. С. Дементьев, О. С. Асеев, А. И. Чичинин, 2009

^{*} Работа выполнена при финансовой поддержке РФФИ (проект № 07-03-00873а).

ный недостаток: при фотодиссоциации ICI практически на всех длинах волн от 550 до 248 нм образуется значительное количество возбужденных атомов I^* ($\equiv I^*(^2P_{1/2})$) [4], которые реагируют с ICI с образованием атомов CI^* [5] (2,3 · 10^{-11} см 3 /с) [6; 7], что делает анализ сигнала ЛМР атомов хлора довольно сложным.

В данной работе предложен другой источник атомов Cl^* — фотодиссоциация молекул SOCl_2 . Сечение поглощения SOCl_2 на длине волны $\lambda = 248$ нм на порядок выше, оно равно $7 \cdot 10^{-18}$ см²; кроме того, как показано в данной работе, выход возбужденных атомов Cl^* на этой длине волны оказался неожиданно большим, а вероятность дезактивации атомов Cl^* молекулами SOCl_2 — незначительной, и поэтому использование этой молекулы в качестве источника атомов Cl^* стало удачной находкой этой работы.

Экспериментальная часть

В данной работе была использована установка времяразрешенного спектрометра ЛМР. Она была подробно описана раньше [8; 9].

Тефлоновый реактор с исследуемым газом расположен внутри резонатора СО2лазера между полюсами электромагнита. Длина зоны регистрации, в которой присутствовали лазерное излучение, переменное (150 кГц, амплитуда до 80 Гс) и постоянное магнитные поля, ограничивалась длиной катушек для создания переменного магнитного поля и составляла 12 см. Регистрация атомов хлора производилась по поглощению на переходе тонкой структуры на 11P(36) линии $^{13}CO_2$ -лазера (882,287 см $^{-1}$) [10] в поляризации Е \perp Н, при которой электрический вектор СО2-излучения перпендикулярен магнитному полю. Использовалась интенсивная линия спектра ЛМР хлора вблизи 3,5 кГс. Неполяризованное излучение эксимерного лазера ELI-94 (248 нм, 15 мДж/имп., 7,5 Гц), работающего на смеси F₂-Кr-Не, вводилось в реактор под малым углом к лучу СО₂-лазера через кварцевое окно. ИК-излучение вводилось в реактор через окно из NaCl, расположенное под углом Брюстера.

Диаметр луча эксимерного лазера в зоне регистрации превышал диаметр луча CO₂-лазера. Излучение CO₂-лазера выводилось

из резонатора при помощи дифракционной решетки (100 штрихов/мм) и поступало на фоторезистор Ge–Hg, охлаждаемый твердым азотом (53 K). Сигнал фоторезистора синхронно детектировался (постоянное время 3 мкс) на частоте модуляции магнитного поля и обрабатывался при помощи компьютера.

Исследуемые вещества напускались в кювету через регуляторы потоков (Advanced Energy, модель Aera), которые измеряли и выставляли необходимые для эксперимента потоки газов. В работе использовались потоки газов SOCl₂, C₂H₄, CCl₃H и NO₂, разбавленные большим количеством аргона, типичное давление в реакторе — примерно 15 Topp.

Выбор аргона в качестве буферного газа был сделан в силу того, что физическое тушение возбужденного атома Cl^* на аргоне существенно медленнее, чем, например, на гелии [1]. Кроме того, в аргоне была значительная (≈ 1 %) примесь кислорода, известного своей способностью ускорять релаксацию между сверхтонкими подуровнями атомов хлора [8].

Описание методики эксперимента

Методика измерения подробно описана раньше [8; 9]. Кинетическая схема, описывающая дезактивацию атомов Cl^* после их образования в процессе фотодиссоциации, имеет вид

$$Cl^* \xrightarrow{k_q} Cl,$$
 $Cl^* \xrightarrow{k^*}$ продукты,
 $Cl \xrightarrow{r}$ продукты.

Здесь k_q , r и k^* — это константы скорости псевдопервого порядка, они выражаются через бимолекулярные константы следующим образом:

$$k_{q} = \sum_{i} k_{qM_{i}} M_{i} ,$$

$$k^{*} = \sum_{i} k_{M_{i}}^{*} M_{i} + k_{D}^{*} ,$$

$$r = \sum_{i} r_{M_{i}} M_{i} + k_{D} .$$
(1)

Здесь k_{qM_i} — константа скорости нереакционного тушения атомов Cl^* молекулами M_i ,

 $k_{M_i}^*$ и r_{M_i} — константы скорости реакций соответственно атомов Cl^* и Cl с молекулами M_i , константы k_D^* и k_D упрощенно описывают диффузию атомов хлора из луча лазера. В эксперименте регистрируется сигнал ЛМР атомов хлора S(t), пропорциональный величине поглощения α_{LMR_i} между индивидуальными Зеемановскими подуровнями:

$$\alpha_{LMR} = \sigma l_{ds} \quad \text{Cl } f - \left[\text{Cl}^* \right] f^* ,$$

$$S \ t = \Theta \quad \text{Cl } -2 \left[\text{Cl}^* \right] ,$$

здесь σ — сечение оптического перехода между рассматриваемыми подуровнями, l_{ds} — длина зоны регистрации (12 см); $f={}^1/_{16}$, $f^*={}^1/_8$ — доля атомов, находящихся на этих подуровнях для состояний ${}^2P_{3/2}$ и ${}^2P_{1/2}$ соответственно. Второе выражение следует из первого, в нем Θ — коэффициент пересчета концентрации атомов в сигнал ЛМР.

После решения системы из двух кинетических уравнений, описывающих дезактивацию и реакции атомов Cl^* и Cl , получившихся в результате фотолиза, для S(t) получается следующее выражение:

$$S t = \Theta \left[\text{Cl}^* \right]_0 \times \times C_r \exp -rt + C_x \exp -\alpha t , \qquad (2)$$

где æ $\equiv k_q + k^*$, амплитуды C_r и $C_{\text{æ}}$ равны

$$C_r = 1/\Gamma - 1 - k_q / r - \omega$$
, (3)

$$C_{x} = k_{a}/r - x - 2. \tag{4}$$

Здесь $\Gamma = [\text{Cl}^*]_0 / ([\text{Cl}^*]_0 + [\text{Cl}]_0)$, где $[\text{Cl}^*]_0$ и $[\text{Cl}]_0$ – концентрации атомов хлора сразу же после фотодиссоциативного импульса (t=0), величина Γ имеет смысл выхода атомов Cl^* . Методика измерения константы скорости дезактивации

$$\operatorname{Cl}^* + M,$$

$$k_M \equiv k_{qM} + k_M^*,$$

состоит в следующем: регистрируются кинетики атомов хлора при различных [М], но постоянных [SOCl₂] и [Ar]; эти кинетики подгоняются выражением (2), в результате чего находятся r и æ; наклон зависимости r от [М] дает константу скорости реакции

Cl + M; наклон зависимости æ от [M] равен k_M .

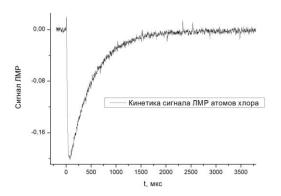
Результаты и обсуждение Изучение дезактивации в процессах $\text{Cl}^*(^2P_{1/2}) + M$ ($M = \text{SOCl}_2$, CCl_3H , C_2H_4 , NO_2)

Для изучения дезактивации возбужденных атомов хлора Cl^* на молекулах $SOCl_2$, CCl_3H , C_2H_4 , NO_2 проводились следующие эксперименты. Через кювету при помощи регуляторов потока пропускались газы M и Аг. Под действием УФ излучения (248 нм) происходила фотодиссоциация молекул SOCl₂, вследствие чего рождались атомы Cl и С1*, сигнал ЛМР которых (2) и регистрировался. В экспериментах по изучению дезактивации на молекулах SOCl₂ использовались только потоки SOCl2 и Ar, в каждой последующей серии эксперимента дополнительно напускалось вещество, одно из CCl₃H, C₂H₄, NO₂, на котором дезактивировали атомы хлора Cl^* , а поток $SOCl_2$, являющийся источником атомов хлора Cl и Cl*, держался постоянным при таком значении, чтобы обеспечить оптимальность между временем нарастания кинетики и ее амплитудой. Записывались кинетики сигнала ЛМР атомов хлора (2) при различных концентрациях тех молекул M, на которых измерялась константа скорости дезактивации, и постоянном потоке буферного газа Ar. Типичные концентрации [M] и [Ar] составляли $\sim 1 \div 12 \cdot 10^{15} \text{ cm}^{-3} \text{ и} \sim 5 \cdot 10^{17} \text{ cm}^{-3} \text{ соот-}$ ветственно.

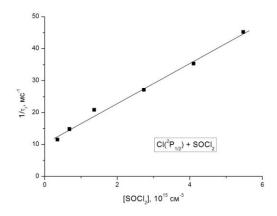
Используя вышеописанную методику, кинетические кривые (рис. 1) разлагались на сумму двух экспонент, из которых извлекались обратные времена появления сигнала ЛМР атома хлора при заданной концентрации молекул M, дезактивирующих атомы Cl*. Из линейной зависимости этих обратных времен от концентраций M по наклону прямой вычислялась константа дезактивации k_M . На рис. 2 проиллюстрирована типичная подобная зависимость для случая $M = SOCl_2$. Константа скорости k_{SOCl_2} измерялась при разных значениях энергии лазерного импульса (6 и 15 мДж/имп) и не зависела от энергии эксимерного лазера. Из этого следует, что процесс $Cl^* + SOCl$ не вносит существенного вклада в эту константу. В таблице (см. ниже) приведены значения констант дезактивации возбужденного атома хлора на молекулах M, полученные в этой работе. Все эти константы являются новыми и в литературе неизвестными.

При [SOCl₂] = 0 прямая на рис. 2 не проходит через начало координат, это говорит о вкладах диффузии, релаксации на аргоне и кислороде. Что касается диффузии, то при наших относительно больших давлениях вклад невелик, и его можно учесть слагаемым $k_D = 2D/r_0^2$ в выражении (1). Здесь r_0 радиус луча на уровне e^{-1} по мощности, $r_0 = 2$ мм, $k_D^{\text{Cl-Ar}} = (0.26 \pm 0.05)$ см²/с при 1 атм, 295 К [11; 12], при $P_{\text{Ar}} = 15$ Торр рассчитываем $k_D = 0.7$ мс $^{-1}$.

Была экспериментально изучена зависимость константы скорости дезактивации Cl^* молекулами NO_2 от давления. Константа дезактивации измерялась при двух значениях давления аргона — 8 и 15 Торр. Оказалось, что константа дезактивации k_{NO_2} не зависит от давления аргона, и, значит, процесс дезактивации атомов $Cl^*(^2P_{1/2})$ молекулами NO_2 бимолекулярный, в отличие от реакции $Cl(^2P_{3/2})$ + NO_2 \rightarrow $ClNO_2$, которая является тримолекулярным процессом, т. е. ее скорость зависит от полного давления.


Трудно судить о причине этого различия. Может быть, энергии спин-орбитального возбуждения атома хлора достаточно для быстрого распада столкновительного комплекса ClNO_2 , а может быть, дезактивация атомов $\text{Cl}^*(^2P_{1/2})$ происходит вследствие дальнодействующего диполь-квадрупольного взаимодействия путем электронно-колебательного обмена энергией; тем более, что в молекуле NO_2 имеется колебание (757 см⁻¹), энергия которого близка к энергии спин-орбитального расщепления в атомах хлора.

Выход атомов $Cl^*(^2P_{1/2})$ при фотолизе $SOCl_2$


В этих же экспериментах был определен квантовый выход возбужденных атомов Cl^* . Используя выражения (2), (3), (4), получаем зависимость между отношением предэкспонент сигнала ЛМР и выходом Γ атомов Cl^* :

$$-\frac{C_{\infty}}{C_r} = e^{-[\infty - r]\Delta t} \left[\frac{3 - D}{1/\Gamma - D} \right],\tag{5}$$

где $D \equiv 1 + k_q / (r - \mathfrak{E}) = (k^* - r)/(\mathfrak{E} - r)$; Δt — это время между началом процесса (t = 0) и начальной точкой в компьютерной под-

Puc. 1. Кинетическая кривая сигнала ЛМР атома хлора

 $Puc.\ 2.$ Зависимость обратного времени подъема сигнала ЛМР атомов хлора от концентрации SOCl₂, в рамке — константа дезактивации атомов ${
m Cl}^*(^2P_{1/2})$ на молекулах SOCl₂

Константы скорости дезактивации атомов ${\rm Cl}^*$ молекулами M $(T=300~{\rm K})$

M	$k_M = a(b) \equiv a \cdot 10^b, \text{cm}^3/\text{c}$
SOCl ₂	$(0,62\pm0,2)(-11)$
C_2H_4	$(18 \pm 5)(-11)$
CCl ₃ H	$(1,8 \pm 0,4)(-11)$
NO_2	$(1,5\pm0,4)(-11)$

гонке. Для системы Cl^* , $\mathrm{Cl} + \mathrm{SOCl}_2$ выполняется соотношение $k_q >> k^*$, поэтому $D \approx 0$. Эта формула позволяет найти величину Γ из отношения предэкспонент при малых концентрациях релаксатора. Заметим, что при очень больших концентрациях релаксатора эта формула неприменима, отношение C_{∞}/C_r стремится к единице, что связано с временным разрешением ЛМР-спектромет-

ра, которое составляет 4 мкс. Применяя выражение (5), находим квантовый выход возбужденных атомов Cl^* при фотолизе SOCl_2 , который составляет $\Gamma = 0.52 \pm 0.03$.

В литературе есть несколько работ [13–17], в которых изучалась динамика фотодиссоциации $SOCl_2$ – в диапазоне длин волн 190–300 нм наблюдались три канала фотодиссоциации:

SOCl₂ + hv
$$\rightarrow$$
 SO + Cl₂, $\lambda_{\text{порог.}} = 557,1 \text{ hm},$
 \rightarrow SOCl + Cl, $\lambda_{\text{порог.}} = 498,8 \text{ hm},$
 \rightarrow SO + 2Cl, $\lambda_{\text{порог.}} = 263,5 \text{ hm},$

где $\lambda_{\text{порог.}}$ – пороговая длина волны, начиная с которой процесс энергетически возможен. Практически во всем этом диапазоне длин волн доминирующим является второй канал, хотя при $\lambda = 193$ нм роль последнего канала существенно увеличивается.

В работе [17] при помощи квантовомеханических вычислений были рассчитаны энергии возбужденных состояний молекулы $SOCl_2$ и силы осцилляторов для оптических переходов в эти состояния, результаты расчета представлены в нижней части рис. 3.

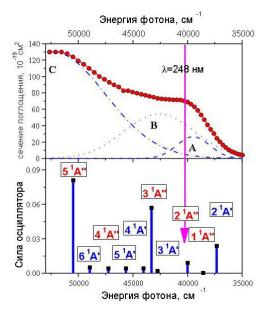


Рис. 3. Сечение поглощения (сверху) и рассчитанные силы осцилляторов для переходов в возбужденные состояния молекулы $SOCl_2$ с указанием симметрии (снизу)

Как видно из рисунка, три состояния $2^1A'$ (4,63 эВ), $3^1A''$ (5,37 эВ) и $5^1A''$ (6,26 эВ) имеют наибольшее значение силы осцилляторов, и, значит, эти три перехода в основном определяют спектр поглощения молекулы $SOCl_2$. В верхней части рис. 3

приведен экспериментальный спектр поглощения молекулы SOCl₂ и представлено разложение этого спектра на три компоненты. Это разложение выполнено методом наименьших квадратов, форма компонент предполагалась гауссовой. Как видно из рис. 3, положения максимумов этих компонент согласуются с квантово-химическими положениями переходов в три наиболее интенсивных перехода. Квантово-химические и спектроскопические положения максимумов согласуются с точностью около 0,2 эВ, ширины компонент равны 0,2–0,5 эВ, что соответствует распаду возбужденного отталкивательного состояния.

В работе [17] был измерен выход возбужденных атомов хлора Cl^* на длине волны 235 нм, который составляет $\Gamma=0.35\pm0.06$, что соответствует равной населенности обоих спин-орбитальных состояний. Измеренный в данной работе выход атомов Cl^* на длине волны 248 нм оказался в полтора раза выше, что соответствует инверсии населенности состояний $^2P_{1/2}$ и $^2P_{3/2}$.

Можно предположить, что больший по значению выход атомов хлора Cl^* на длине волны 248 нм по отношению к выходу на 235 нм объясняется тем, что фотодиссоциация при $\lambda = 235$ нм идет в основном через состояние $3^1A''$, а при $\lambda = 248$ нм большой вклад дает также состояние $2^1A'$, имеющее выход атомов хлора Cl^* , существенно превышающий 0.5.

Изучение реакции $Cl(^2P_{3/2}) + SOCl_2$

Измерение константы скорости $r_{\mathrm{SOCl_2}}$ реакции

$$Cl + SOCl_2 \rightarrow продукты$$
 (6)

осуществлялось по той же методике: разложением кинетик сигнала ЛМР на сумму экспонент (2) и построением линейной зависимости обратного времени спада кинетики от [SOCl₂] (рис. 4). По наклону прямой была найдена константа скорости r_{SOCl_2} , равная $(3,1\pm0,7)\cdot10^{-14}$ см³/с. Упоминание об этой константе в литературе не найдено. Эта константа скорости достаточно мала, чтобы при изучении дезактивации атомов Cl^* работать с большими концентрациями SOCl₂. Если предположить, что основным каналом реакции (6) является канал отрыва атома хлора $Cl + SOCl_2 \rightarrow SOCl + Cl_2 +$

+ 0,0067 эВ, то эта реакция будет термонейтральна.

Надо отметить, что константа скорости $r_{\mathrm{SOCl_2}}$ измерялась в двух аналогичных экспериментах, в которых энергия эксимерного лазера была разной (6 и 15 мДж/имп), а значение константы $r_{\mathrm{SOCl_2}}$ оставалось одним и тем же. Поэтому можно утверждать, что спад кинетики сигнала ЛМР атомов хлора при изменении концентрации молекул $\mathrm{SOCl_2}$ определялся реакцией $\mathrm{Cl} + \mathrm{SOCl_2}$, а не процессом $\mathrm{Cl} + \mathrm{SOCl_2}$, так как концентрация радикалов SOCl зависит от энергии лазерного импульса, в силу того что радикалы SOCl образуются фотолизом молекул $\mathrm{SOCl_2}$.

Эта методика позволяет вычислить уже известные в литературе константы скорости реакций $Cl + C_2H_4$, CCl_3H и NO_2 , что является также проверкой ее корректности. Во всех трех случаях константы скорости неплохо ложатся в диапазон литературных значений:

$$r_{\text{CCl}_3\text{H}} = 0.4 \div 3.2 \cdot 10^{-13} \,\text{cm}^3/\text{c} \quad [18],$$

$$r_{\text{NO}_2} = 0.8 \div 1.7 \cdot 10^{-30} \,\text{cm}^6/\text{c} \quad [19],$$

$$r_{\text{C}_2\text{H}_4} = 1.4 \div 1.7 \cdot 10^{-29} \,\text{cm}^6/\text{c} \quad [20].$$

Заключение

В данной работе был измерен выход атомов хлора в спин-орбитально возбужденном состоянии при фотодиссоциации молекул $SOCl_2$ на длине волны 248 нм. Этот выход больше, чем выход на длине волны $\lambda=235$ нм. Мы предполагаем, что это объясняется тем, что дополнительный вклад в выход атомов Cl^* на длине 248 нм дает сильнопоглощающее состояние $2^1A'$ молекулы $SOCl_2$, при распаде которого преобладают атомы Cl^* .

Впервые были измерены константы скорости дезактивации возбужденного атома хлора Cl^* молекулами SOCl_2 , CCl_3H , C_2H_4 и NO_2 , а также была измерена неизвестная в литературе константа скорости термонейтральной реакции $\text{Cl}(^2P_{3/2})$ с молекулами SOCl_2 . В случае с молекулой NO_2 были проведены эксперименты с разными давлениями и установлено, что, в отличие от известной в литературе тримолекулярной реакции $\text{Cl} + \text{NO}_2 + \text{M} \rightarrow \text{ClNO}_2 + \text{M}$, процесс дез-

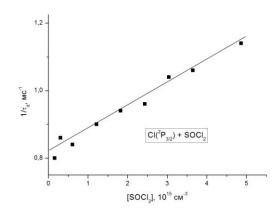


Рис. 4. Зависимость обратного времени спада кинетической кривой сигнала ЛМР атомов хлора от концентрации $SOCl_2$

активации атомов ${\rm Cl}^*$ молекулами ${\rm NO}_2$ не зависит от давления и проходит бимолекулярно.

Список литературы

- 1. *Chichinin A. I.* Chemical Properties of Electronically Excited Halogen Atoms $\{X(^2P_{1/2})\ (X=F,\ Cl,\ Br,\ I)\}\ //\ J.$ Phys. Chem. Ref. Data. 2006. Vol. 35. P. 869–928.
- 2. Seery D. J., Britton D. Continuous Absorption Bands {Cl₂, Br₂, BrCl, ICl and IBr} // J. Phys. Chem. 1964. Vol. 68. P. 2263–2268.
- 3. Clyne M. A. A., Cruse H. W. Atomic Resonance Fluorescence Spectrometry for the Rate Constants of Rapid Bimolecular Reactions. Part 2: {Cl+BrCl, Cl+ICl, Br+IBr, Br+ICl} // J. Chem. Soc. Faraday Trans. 1972. Vol. 2 (68). P. 1377–1387.
- 4. Mashnin T. S., Chernychev A. V., Krasnoperov L. N. Laser Photolysis of {ICl. A} Time-Resolved {LMR} Measurement of ${Cl(^2P_{1/2})}$ Relative Yield // Chem. Phys. Lett. 1993. Vol. 207. P. 105–109.
- 5. *Надхин А. И., Гордон Е. Б.* Спин-орбитальное возбуждение в газофазных химических реакциях. Реакция $\{I(^2P_{1/2}) + IC1 \rightarrow IC1 + Cl(^2P_{1/2})\}$ // Хим. физика. 1994. Т. 13. С. 3–10.
- 6. *Hofmann H., Leone S. R.* Quenching and Reactions of Laser-Excited {I(5 $^2P_{1/2}$)} Atoms with Halogen and Interhalogen Molecules // J. Chem. Phys. 1978. Vol. 69. P. 641–646.
- 7. Lilenfeld H. V., Whitefield P. D., Bradburn G. R. $I(^2P_{1/2})$ Deactivation by ICl and Cl_2 // J. Phys. Chem. 1984. Vol. 88. P. 6158–6162.

- 8. Chichinin A. I., Chasovnikov S. A., Krasnoperov L. N. The Laser Photolysis of ICl at 530 nm: A Time-Resolved LMR Study // Chem. Phys. Lett. 1987. Vol. 138. P. 371–376.
- 9. *Chichinin A. I.* Collisions of O(¹D) with HCl, Cl₂, and COCl₂}: Total Quenching, Channel Specific Rate Constants, and Yields of {Cl(²P_{1/2})} // J. Chem. Phys. 1997. Vol. 106. P. 1057.
- 10. Dagenais M., Johns J. W. C., McKellar A. R. W. Precise Measurement of the Ground State $\{(^2P_{1/2}-^2P_{3/2})\}$ Splitting of Atomic Chlorine by CO₂ Laser Zeeman Spectroscopy // Can. J. Phys. 1976. Vol. 54. P. 1438.
- 11. *Judsikis H. S., Wun M. J.* // Chem. Phys. 1978. Vol. 68. P. 4123–4127.
- 12. Andre J. C., Jezequel J. Y., Clark R. H., Husain D. J. // Photochem. 1980. Vol. 14. P. 245–251.
- 13. Tonokura K., Matsumi Y., Kawasaki M., Kim H. L., Yabushita S., Fujimura S., Saito K. Photodissociation of ICl at 235–248 nm // J. Chem. Phys. 1993. Vol. 99. P. 3461–3467.
- 14. Baum G., Effenhauser C. S., Felder P., Huber J. R. Photofragmentation of Thionyl Chloride: Competition Between Radical, Molecular, and Three-Body Dissociations // J. Phys. Chem. 1992. Vol. 96. P. 756.

- 15. Wang H., Chen X., Weiner B. R. Laser Photodissociation Dynamics of Thionyl Chloride: Concerted and Stepwise Cleavage of S–Cl Bonds // J. Phys. Chem. 1993. Vol. 397. P. 12260.
- 16. Kawasaki M., Suto K., Sato Y., Matsumi Y., Bersohn R. Ion Imaging of the Photodissociation of Chlorine-Containing Molecules // J. Phys. Chem. 1996. Vol. 100. P. 19853.
- 17. Chichinin A., Einfeld T., Gericke K.-H., Grunenberg J., Maul C., Schafer L. Photodissociation Dynamics of SOCl₂ // Phys. Chem. 2005. Vol. 7. P. 301–309.
- 18. Bryukov M. G., Slagle I. R., Knyazev V. D. // J. Phys. Chem. A. 2002. Vol. 106. P. 10532–10542.
- 19. *Ravishankara A. R.*, *Smith G. J.*, *Davis D. D.* // Int. J. Chem. Kinet. 1988. Vol. 20.
- 20. Knyazev V. D., Kalinovski I. J., Slagle I. R. Kinetics of the CH2CH2Cl \rightarrow C2H4 + Cl Reaction // J. Phys. Chem. A. 1999. Vol. 103. P. 3216–3221.

Материал поступил в редколлегию 19.06.2009

A. A. Rakhymzhan, P. V. Koshlyakov, P. S. Dementiev, O. S. Aseev, A. I. Chichinin

DEACTIVATION STUDY OF ELECTRONICALLY EXCITED Cl(²P_{1/2}) ATOMS BY SOCl₂, CCl₃H, C₂H₄, NO₂ MOLECULES WITH LASER MAGNETIC RESONANCE (LMR) TECHNIQUE

The method of time-resolved laser magnetic resonance (LMR) has been employed to detect spin-orbital excited chlorine $Cl^*(\equiv Cl(^2P_{1/2}))$ atoms at room temperature. The rate constants for the deactivation of $Cl^* \times 10^{-11} \text{cm}^3/\text{molecule} \cdot s, \pm 2\sigma$ by $SOCl_2$ (0.62 \pm 0.2), CCl_3H (18 \pm 5), C_2H_4 (1.5 \pm 0.4) and NO_2 (1.5 \pm 0.4) are re-

ported. The unknown in literature rate constant for the thermo-neutral reaction of ground state $Cl(^2P_{3/2})$ atoms with $SOCl_2$ were measured. The relative quantum yield of Cl^* in photodissociation of $SOCl_2$ is determined to be 0.52 ± 0.03 .

Keywords: deactivation, spin-orbital excited atom of chlorine, photodissociation, laser magnetic resonance (LMR).